On Subadditivity of Functions on Positive Operators Without Operator Monotonicity and Convexity
Autor: | ehsan anjidani |
---|---|
Jazyk: | perština |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | پژوهشهای ریاضی, Vol 6, Iss 4, Pp 521-526 (2020) |
Druh dokumentu: | article |
ISSN: | 2588-2546 2588-2554 |
Popis: | In this paper, we investigate the subadditivity of functions on positive operators without operator monotonicity and operator convexity: Let $A$ and $B$ be positive operators on a Hilbert space $mathcal{H}$ satisfying $0leq AB+BA$. Suppose that for the operator $$E=(A+B)^{-frac{1}{2}}left(A^2+B^2right)(A+B)^{-frac{1}{2}},$$ the open interval $(m_E,M_E)$ where, $m_E$ and $M_E$ are bounds of operator $E$, does not intersect the spectrums of operators $A$ and $B$. Then, for every continuous function $g:(0,infty)rightarrowmathbb{R}^+$ for which the function $f(t)=frac{g(t)}{t}$ is convex and decreasing, we have $$g(A+B)leq c(m,M,f)(g(A)+g(B)),$$ where, $m$ and $M$ are bounds of operator $A+B$ and $$c(m,M,f):=max_{mleq tleq M}left{frac{frac{f(M)-f(m)}{M-m}t+frac{Mf(m)-mf(M)}{M-m}}{f(t)}right}.$$./files/site1/files/64/3.pdf |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |