Thermal Behaviour Investigation of a Large and High Power Lithium Iron Phosphate Cylindrical Cell

Autor: Odile Capron, Ahmadou Samba, Noshin Omar, Peter Van Den Bossche, Joeri Van Mierlo
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Energies, Vol 8, Iss 9, Pp 10017-10042 (2015)
Druh dokumentu: article
ISSN: 1996-1073
80910017
DOI: 10.3390/en80910017
Popis: This paper investigates the thermal behaviour of a large lithium iron phosphate (LFP) battery cell based on its electrochemical-thermal modelling for the predictions of its temperature evolution and distribution during both charge and discharge processes. The electrochemical-thermal modelling of the cell is performed for two cell geometry approaches: homogeneous (the internal region is considered as a single region) and discrete (the internal region is split into smaller regions for each layer inside the cell). The experimental measurements and the predictions of the cell surface temperature achieved with the simulations for both approaches are in good agreement with 1.5 °C maximum root mean square error. From the results, the maximum cell surface temperature and temperature gradient between the internal and the surface regions are around 31.3 °C and 1.6 °C. The temperature gradient in the radial direction is observed to be greater about 1.1 °C compared to the longitudinal direction, which is caused by the lower thermal conductivity of the cell in the radial compared to the longitudinal direction. During its discharge, the reversible, the ohmic and the reaction heat generations inside the cell reach up to 2 W, 7 W and 17 W respectively. From the comparison of the two modelling approaches, this paper establishes that the homogeneous modelling of the cell internal region is suitable for the study of a single cylindrical cell and is appropriate for the two-dimensional thermal behaviour investigation of a battery module made of multiple cells.
Databáze: Directory of Open Access Journals