Versatile clinical movement analysis using statistical parametric mapping in MovementRx
Autor: | Amr Alhossary, Todd Pataky, Wei Tech Ang, Karen Sui Geok Chua, Wai Hang Kwong, Cyril John Donnelly |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023) |
Druh dokumentu: | article |
ISSN: | 2045-2322 07988648 |
DOI: | 10.1038/s41598-023-29635-4 |
Popis: | Abstract Clinical gait analysis is an important biomechanics field that is often influenced by subjectivity in time-varying analysis leading to type I and II errors. Statistical Parametric Mapping can operate on all time-varying joint dynamics simultaneously, thereby overcoming subjectivity errors. We present MovementRx, the first gait analysis modelling application that correctly models the deviations of joints kinematics and kinetics both in 3 and 1 degrees of freedom; presented with easy-to-understand color maps for clinicians with limited statistical training. MovementRx is a python-based versatile GUI-enabled movement analysis decision support system, that provides a holistic view of all lower limb joints fundamental to the kinematic/kinetic chain related to functional gait. The user can cascade the view from single 3D multivariate result down to specific single joint individual 1D scalar movement component in a simple, coherent, objective, and visually intuitive manner. We highlight MovementRx benefit by presenting a case-study of a right knee osteoarthritis (OA) patient with otherwise undetected postintervention contralateral OA predisposition. MovementRx detected elevated frontal plane moments of the patient’s unaffected knee. The patient also revealed a surprising adverse compensation to the contralateral limb. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |