Granular Material Development Applied in an Experimental Section for Civil Engineering Purposes

Autor: Jessica Giro-Paloma, Joan Formosa, Josep M. Chimenos
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Applied Sciences, Vol 10, Iss 19, p 6782 (2020)
Druh dokumentu: article
ISSN: 2076-3417
DOI: 10.3390/app10196782
Popis: In this study, a granular material (GM) derived from wastes generated in waste-to-energy plants was developed. Weathered bottom ash (WBA) and air pollution control (APC) ashes obtained from municipal solid waste incineration (MSWI) were used as raw materials. A mortar (M) with 50 wt. % of APC and 50 wt. % of Ordinary Portland Cement (OPC) CEM-I was prepared. The GM formulation was 20 wt. % M and 80 wt. % WBA. At the laboratory scale, WBA, APC, M, and crushed GM were evaluated by means of dynamic leaching (EN 12457-4) tests, and WBA, M, and crushed GM by percolation column (CEN/TS 16637) tests. The metal(loid)s analyzed were below the non-hazardous limits, regarding the requirement of the metal(loid)s released for waste revalorization. In order to simulate a road subbase real scenario, the crushed GM was tested in an experimental section (10 × 20 × 0.2 m). During a 600-day period, the leachates generated by the percolation of rainwater were collected. This research shows outstanding results regarding the metal(loid)s released for both the “accumulated” and “punctual” leachates collected. An accomplishment in the immobilization of metal(loid)s from APC residues was achieved because of the encapsulation effect of the cement. The GM formulation from both MSWI wastes can be considered an environmentally safe procedure for revalorizing APC residues.
Databáze: Directory of Open Access Journals