The oxidative stress caused by atrazine in root exudation of Pennisetum americanum (L.) K. Schum

Autor: Ying Zhang, Duo Jiang, Chao Yang, Shijie Deng, Xinyu Lv, Ruifeng Chen, Zhao Jiang
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Ecotoxicology and Environmental Safety, Vol 211, Iss , Pp 111943- (2021)
Druh dokumentu: article
ISSN: 0147-6513
DOI: 10.1016/j.ecoenv.2021.111943
Popis: Pearl millet (Pennisetum americanum (L.) K. Schum) has been proven as a potential remediation plant of the pollution caused by atrazine. Plants used in remediation can release root exudates to communicate with rhizosphere microorganisms and accelerate the removal of pollutants in soil. However, the response of pearl millet root exudates under atrazine stress has remained unclear. In this study, hydroponic experiments were conducted at Northeast Agricultural University, Harbin, China, to investigate the oxidative stress response and the changes in composition of root exudates in pearl millet plants that were exposed to 19.4 mgL−1 of atrazine, compared to the untreated control. The experiment was established as six treatments with exposure to no atrazine for 2, 4 and 6 days (CK-2, CK-4, CK-6) and 19.4 mgL−1 atrazine for 2, 4 and 6 days (AT-2, AT-4, AT-6), respectively. The results suggest that the growth of the seedlings changed slightly when exposed to atrazine for 2 days. The content of thiobarbituric acid reactive substances exposed to atrazine for 6 days increased 26% compared with the treatment that was exposed for 2 days. Moreover, the reactive oxygen species in test plant obviously increased when exposed to atrazine for 6 days. In addition, the activity of superoxide dismutase increased from 30.82 ug−1 to 37.33 ug−1 fresh weight after 6 days of exposure to atrazine. The results of a nontargeted metabolomic analysis suggest that carbohydrate metabolism, fatty acid metabolism and amino acid metabolism in pearl millet were obviously affected by the oxidative stress caused by atrazine. The contents of sphinganine and methylimidazole acetaldehyde in CK-6 increased by 5.14 times and 2.05 times, respectively, compared with those of CK-2. Furthermore, the contents of (S)-methylmalonic acid semialdehyde and 1-pyrroline-2-carboxylic acid decreased by 0.56 times and 0.5 times, respectively, compared with the AT-6. These results strongly suggest that the changes observed in the composition of root exudates in pearl millet seedlings can be attributed to the oxidative stress caused by atrazine.
Databáze: Directory of Open Access Journals