Autor: |
Roghayeh Bagherian, Esmaeil Hosseini |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Mathematics Interdisciplinary Research, Vol 6, Iss 2, Pp 139-149 (2021) |
Druh dokumentu: |
article |
ISSN: |
2476-4965 |
DOI: |
10.22052/mir.2021.240439.1273 |
Popis: |
Assume that A is a Grothendieck category and R is the category of all A-representations of a given quiver Q. If Q is left rooted and A has a projective generator, we prove that the big finitistic flat (resp. projective) dimension FFD(A) (resp. FPD(A)) of A is finite if and only if the big finitistic flat (resp. projective) dimension of R is finite. When A is the Grothendieck category of left modules over a unitary ring R, we prove that if FPD(R) < +∞ then any representation of Q of finite flat dimension has finite projective dimension. Moreover, if R is n-perfect then we show that FFD(R) < +∞ if and only if FPD(R) < +∞. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|