A Single‐Atom Manganese Nanozyme Mn‐N/C Promotes Anti‐Tumor Immune Response via Eliciting Type I Interferon Signaling

Autor: Wen Qiao, Jingqi Chen, Huayuan Zhou, Cegui Hu, Sumiya Dalangood, Hanjun Li, Dandan Yang, Yu Yang, Jun Gui
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Advanced Science, Vol 11, Iss 14, Pp n/a-n/a (2024)
Druh dokumentu: article
ISSN: 2198-3844
DOI: 10.1002/advs.202305979
Popis: Abstract Tumor microenvironment (TME)‐induced nanocatalytic therapy is a promising strategy for cancer treatment, but the low catalytic efficiency limits its therapeutic efficacy. Single‐atom catalysts (SACs) are a new type of nanozyme with incredible catalytic efficiency. Here, a single‐atom manganese (Mn)‐N/C nanozyme is constructed. Mn‐N/C catalyzes the conversion of cellular H2O2 to ∙OH through a Fenton‐like reaction and enables the sufficient generation of reactive oxygen species (ROS), which induces immunogenic cell death (ICD) of tumor cells and significantly promotes CD8+T anti‐tumor immunity. Moreover, RNA sequencing analysis reveals that Mn‐N/C treatment activates type I interferon (IFN) signaling, which is critical for Mn‐N/C‐mediated anti‐tumor immune response. Mechanistically, the release of cytosolic DNA and Mn2+ triggered by Mn‐N/C collectively activates the cGAS‐STING pathway, subsequently stimulating type I IFN induction. A highly efficient single‐atom nanozyme, Mn‐N/C, which enhances anti‐tumor immune response and exhibits synergistic therapeutic effects when combined with the anti‐PD‐L1 blockade, is proposed.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje