Popis: |
Abstract Background Malaria remains a global health challenge, particularly in Peru's Loreto region. Despite ongoing efforts, high infection rates and asymptomatic cases perpetuate transmission. The Peruvian Ministry of Health’s “Zero Malaria Plan” targets elimination. This novel study combines microscopic, molecular, and serological techniques to assess transmission intensity, identify epidemiological risk factors, and characterize species-specific patterns across villages. The findings aim to inform targeted interventions and support broader malaria elimination efforts in line with the Zero Malaria Plan initiative. Methods A cross-sectional malaria survey was conducted in the Zungarococha community, comprising the villages Llanchama (LL), Ninarumi (NI), Puerto Almendra (PA), and Zungarococha (ZG), using microscopic, molecular, and serological techniques to evaluate malaria transmission intensity. Statistical analysis, including multivariate-adjusted analysis, seroprevalence curves, and spatial clustering analysis, were performed to assess malaria prevalence, exposure, and risk factors. Results The survey revealed a high prevalence of asymptomatic infections (6% by microscopy and 18% by PCR), indicating that molecular methods are more sensitive for detecting asymptomatic infections. Seroprevalence varied significantly between villages, reflecting the heterogeneous malaria transmission dynamics. Multivariate analysis identified age, village, and limited bed net use as significant risk factors for malaria infection and species-specific exposure. Seroprevalence curves demonstrated community-specific patterns, with Llanchama and Puerto Almendra showing the highest seroconversion rates for both Plasmodium species. Conclusions The study highlights the diverse nature of malaria transmission in the Loreto region, particularly nothing the pronounced heterogeneity as transmission rates decline, especially in residual malaria scenarios. The use of molecular and serological techniques enhances the detection of current infections and past exposure, aiding in the identification of epidemiological risk factors. These findings underscore the importance of using molecular and serological tools to characterize malaria transmission patterns in low-endemic areas, which is crucial for planning and implementing targeted interventions and elimination strategies. This is particularly relevant for initiatives like the Zero Malaria Plan in the Peruvian Amazon. |