Dietary ferulic acid supplementation enhances antioxidant capacity and alleviates hepatocyte pyroptosis in diquat challenged piglets

Autor: Junqiu Luo, Xiu Wu, Daiwen Chen, Bing Yu, Jun He
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Journal of Animal Science and Biotechnology, Vol 15, Iss 1, Pp 1-11 (2024)
Druh dokumentu: article
ISSN: 2049-1891
DOI: 10.1186/s40104-024-01086-5
Popis: Abstract Background Oxidative stress significantly impacts growth performance and liver function in piglets. Ferulic acid (FA) works as an antioxidant, however, the role and mechanism of FA in the regulation of diquat-induced oxidative stress in piglets are less known. This study was designed to investigate the effects of FA on growth performance and antioxidant capacity in piglets with diquat challenge. Methods Thirty-two healthy DLY (Duroc × Landrace × Yorkshire) piglets (13.24 ± 0.19 kg) were randomly divided into one of two diets including 0 or 4 g/kg FA for 14 d. On d 15, all pigs were intraperitoneally injected diquat or sterile saline. Results Dietary supplementation with ferulic acid (FA) significantly improved the average daily gain (ADG) and decreased feed-gain ratio (F/G) of piglets. Here, dietary FA supplementation reduced serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities in diquat challenged piglets. Furthermore, diquat infusion increased reactive oxygen radicals (ROS) level in liver, decreased the activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC) and increased malondialdehyde (MDA) content in the liver and serum. Supplementation with FA significantly increased T-AOC and T-SOD activities and decreased MDA and ROS levels. FA down-regulated gene and protein expression of Keap1, and up-regulated protein expression of Nrf2 and HO-1 in the liver of piglets with diquat challenge. Importantly, diquat challenge increased the ratio of late apoptosis, increased serum levels of IL-1β, IL-18 and lactate dehydrogenase (LDH), and up-regulated pyroptosis-related genes in the liver. FA supplementation reduced the ratio of late apoptosis and down-regulated mRNA expression of Caspase-1. Accordingly, FA addition reduced concentration of IL-1β, IL-18, and LDH under diquat challenge. Conclusions Diquat-induced oxidative stress reduced growth performance and impaired liver function in piglets. Dietary FA supplementation enhanced the antioxidant capacity and reduced the degree of hepatocyte pyroptosis, thereby alleviating the oxidative damage in the liver and mitigating the impact of diquat on growth performance of piglets.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje