Upper paired domination in graphs

Autor: Huiqin Jiang, Pu Wu, Jingzhong Zhang, Yongsheng Rao
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: AIMS Mathematics, Vol 7, Iss 1, Pp 1185-1197 (2022)
Druh dokumentu: article
ISSN: 2473-6988
45434409
DOI: 10.3934/math.2022069?viewType=HTML
Popis: A set $ PD\subseteq V(G) $ in a graph $ G $ is a paired dominating set if every vertex $ v\notin PD $ is adjacent to a vertex in $ PD $ and the subgraph induced by $ PD $ contains a perfect matching. A paired dominating set $ PD $ of $ G $ is minimal if there is no proper subset $ PD'\subset PD $ which is a paired dominating set of $ G $. A minimal paired dominating set of maximum cardinality is called an upper paired dominating set, denoted by $ \Gamma_{pr}(G) $-set. Denote by $ Upper $-$ PDS $ the problem of computing a $ \Gamma_{pr}(G) $-set for a given graph $ G $. Michael et al. showed the APX-completeness of $ Upper $-$ PDS $ for bipartite graphs with $ \Delta = 4 $ [11]. In this paper, we show that $ Upper $-$ PDS $ is APX-complete for bipartite graphs with $ \Delta = 3 $.
Databáze: Directory of Open Access Journals