Autor: |
Grace Liu, Priya Dwivedi, Thorsten Trupke, Ziv Hameiri |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Advanced Science, Vol 10, Iss 18, Pp n/a-n/a (2023) |
Druh dokumentu: |
article |
ISSN: |
2198-3844 |
DOI: |
10.1002/advs.202300206 |
Popis: |
Abstract Luminescence imaging is widely used to identify spatial defects and extract key electrical parameters of photovoltaic devices. To reliably identify defects, high‐quality images are desirable; however, acquiring such images implies a higher cost or lower throughput as they require better imaging systems or longer exposure times. This study proposes a deep learning‐based method to effectively diminish the noise in luminescence images, thereby enhancing their quality for inspection and analysis. The proposed method eliminates the requirement for extra hardware expenses or longer exposure times, making it a cost‐effective solution for image enhancement. This approach significantly improves image quality by >30% and >39% in terms of the peak signal‐to‐noise ratio and the structural similarity index, respectively, outperforming state‐of‐the‐art classical denoising algorithms. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|