Autor: |
Sze Ling Ho, Jia-Kang Wang, Yu-Jou Lin, Ching-Ren Lin, Chen-Wei Lee, Chia-Hsin Hsu, Lo-Yu Chang, To-Hsiang Wu, Chien-Chia Tseng, Hsiao-Jou Wu, Cédric M. John, Tatsuo Oji, Tsung-Kwei Liu, Wen-Shan Chen, Peter Li, Jiann-Neng Fang, Jih-Pai Lin |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 12, Iss 1, Pp 1-9 (2022) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-022-11920-3 |
Popis: |
Abstract Abundant fossil specimens of Scaphechinus mirabilis, now occurring mostly in temperate waters, have been found in the Toukoshan Formation (Pleistocene) in Miaoli County, Taiwan. Environmental changes leading to its extirpation (local extinction) have thus far been elusive. Here, we reconstruct past environmental and oceanic conditions off northwest Taiwan by analyzing clumped isotopes, as well as stable oxygen isotopes, of well-preserved fossil echinoid tests collected from the Toukoshan Formation. Radiocarbon dates suggest that these samples are from Marine Isotope Stage 3 (MIS 3). Paleotemperature estimates based on clumped isotopes indicate that fossil echinoids were living in oceanic conditions that range from 9 to 14 °C on average, comparable with the estimate derived for a modern sample from Mutsu Bay, Japan. Notably, this temperature range is ~ 10 °C colder than today’s conditions off northwest Taiwan. The substantially lower temperatures during ~ 30 ka (MIS 3) compared to the modern conditions might be due to the rerouting of surface currents off northwest Taiwan when the sea level was ~ 60 m lower than today, in addition to the cooling caused by a lower atmospheric CO2 level during the Last Glacial Period. Colder waters brought here by the China Coastal Current (CCC) and the existence of shallow subtidal zones termed “Miaoli Bay” (mainly located in the present-day Miaoli county) during MIS 3 plausibly sustained generations of S. mirabilis, yielding tens of thousands of fossil specimens in the well-preserved fossil beds. The likely extirpation driver is the drastic change from a temperate climate to much warmer conditions in the shallow sea during the Pleistocene–Holocene transition. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|