Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$

Autor: Naim L. Braha, Ismet Temaj
Jazyk: English<br />Portuguese
Rok vydání: 2019
Předmět:
Zdroj: Boletim da Sociedade Paranaense de Matemática, Vol 37, Iss 4, Pp 9-17 (2019)
Druh dokumentu: article
ISSN: 0037-8712
2175-1188
DOI: 10.5269/bspm.v37i4.32297
Popis: Let $(x_k)$, for $k\in \mathbb{N}\cup \{0\}$ be a sequence of real or complex numbers and set $(EC)_{n}^{1}=\frac{1}{2^n}\sum_{j=0}^{n}{\binom{n}{j}\frac{1}{j+1}\sum_{v=0}^{j}{x_v}},$ $n\in \mathbb{N}\cup \{0\}.$ We present necessary and sufficient conditions, under which $st-\lim_{}{x_k}= L$ follows from $st-\lim_{}{(EC)_{n}^{1}} = L,$ where L is a finite number. If $(x_k)$ is a sequence of real numbers, then these are one-sided Tauberian conditions. If $(x_k)$ is a sequence of complex numbers, then these are two-sided Tauberian conditions.
Databáze: Directory of Open Access Journals