Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$
Autor: | Naim L. Braha, Ismet Temaj |
---|---|
Jazyk: | English<br />Portuguese |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Boletim da Sociedade Paranaense de Matemática, Vol 37, Iss 4, Pp 9-17 (2019) |
Druh dokumentu: | article |
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.v37i4.32297 |
Popis: | Let $(x_k)$, for $k\in \mathbb{N}\cup \{0\}$ be a sequence of real or complex numbers and set $(EC)_{n}^{1}=\frac{1}{2^n}\sum_{j=0}^{n}{\binom{n}{j}\frac{1}{j+1}\sum_{v=0}^{j}{x_v}},$ $n\in \mathbb{N}\cup \{0\}.$ We present necessary and sufficient conditions, under which $st-\lim_{}{x_k}= L$ follows from $st-\lim_{}{(EC)_{n}^{1}} = L,$ where L is a finite number. If $(x_k)$ is a sequence of real numbers, then these are one-sided Tauberian conditions. If $(x_k)$ is a sequence of complex numbers, then these are two-sided Tauberian conditions. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |