Autor: |
Florian Schill, Chris Michel, Andrei Firus |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Sensors, Vol 22, Iss 23, p 9562 (2022) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s22239562 |
Popis: |
Against the background of an aging infrastructure, the condition assessment process of existing bridges is becoming an ever more challenging task for structural engineers. Short-term measurements and structural monitoring are valuable tools that can lead to a more accurate assessment of the remaining service life of structures. In this context, contactless sensors have great potential, as a wide range of applications can already be covered with relatively little effort and without having to interrupt traffic. In particular, profile scanning and microwave interferometry, have become increasingly important in the research field of bridge measurement and monitoring in recent years. In contrast to other contactless displacement sensors, both technologies enable a spatially distributed detection of absolute structural displacements. In addition, their high sampling rate enables the detection of the dynamic structural behaviour. This paper analyses the two sensor types in detail and discusses their advantages and disadvantages for the deformation monitoring of bridges. It focuses on a conceptual comparison between the two technologies and then discusses the main challenges related to their application in real-world structures in operation, highlighting the respective limitations of both sensors. The findings are illustrated with measurement results at a railway bridge in operation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|