Autor: |
Zhenyu Yin, Zisong Wang, Chao Fan, Xiaohui Wang, Tong Qiu |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Sensors, Vol 23, Iss 15, p 6883 (2023) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s23156883 |
Popis: |
Edge detection is a crucial step in many computer vision tasks, and in recent years, models based on deep convolutional neural networks (CNNs) have achieved human-level performance in edge detection. However, we have observed that CNN-based methods rely on pre-trained backbone networks and generate edge images with unwanted background details. We propose four new fusion difference convolution (FDC) structures that integrate traditional gradient operators into modern CNNs. At the same time, we have also added a channel spatial attention module (CSAM) and an up-sampling module (US). These structures allow the model to better recognize the semantic and edge information in the images. Our model is trained from scratch on the BIPED dataset without any pre-trained weights and achieves promising results. Moreover, it generalizes well to other datasets without fine-tuning. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|