Popis: |
In recent years, there has been a trend toward expanding the operating frequency range and increasing the output power of Sound Navigation and Ranging (SONAR) systems to enhance their acoustic detection capabilities. However, due to this increase in operational power, the electrical capacity of amplifiers for SONAR system operation also increases, necessitating High-Power Amplifiers. When configured with a single amplifier, as in conventional methods, the volume of amplifiers increases due to volumetric increases in heat dissipation, components, and windings. These issues are detrimental to SONAR amplifier installation, mobility, maintenance, and equipment lifespan due to stress on individual components. Additionally, amplifiers for SONAR systems are comprised of power conversion devices, transformers for LC filters and matching, necessitating consideration of LC filters and matching transformers for enhancing voltage quality and efficiency to improve amplifier performance transmitted to SONAR transducers. However, previous research has focused on single-amplifier design methods, neglecting such considerations. Therefore, this paper proposes a design technique that overcomes the drawbacks of using the conventional design method by configuring multiple H-bridge inverters in a cascade format and utilizes one of the optimization algorithms, Particle Swarm Optimization (PSO), to derive amplifier design techniques that optimize component parameters for enhancing high-capacity amplifier performance. Subsequently, theoretical analysis, simulations, and experimental results comparing the proposed high-power amplifier design method with conventional single-amplifier design methods demonstrate similar error rates in operational frequency bands. |