Autor: |
Aleksandr A. Pypka |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Advances in Group Theory and Applications, Vol 4, Pp 65-82 (2017) |
Druh dokumentu: |
article |
ISSN: |
2499-1287 |
DOI: |
10.4399/97888255086975 |
Popis: |
We consider some natural relationships between the factors of the central series in groups. It was proved that if $G$ is a locally generalized radical group and $G/\zeta_k(G)$ has finite section $p$-rank $r$ (for some positive integer $k$), then $G$ includes a normal subgroup $L$ such that $G/L$ is nilpotent. Moreover, there exists a function $g$ such that $sr_p(L)\leq g(r)$. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|