Unique Minimum Semipaired Dominating Sets in Trees

Autor: Haynes Teresa W., Henning Michael A.
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Discussiones Mathematicae Graph Theory, Vol 43, Iss 1, Pp 35-53 (2023)
Druh dokumentu: article
ISSN: 2083-5892
DOI: 10.7151/dmgt.2349
Popis: Let G be a graph with vertex set V. A subset S ⊆ V is a semipaired dominating set of G if every vertex in V \ S is adjacent to a vertex in S and S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number is the minimum cardinality of a semipaired dominating set of G. We characterize the trees having a unique minimum semipaired dominating set. We also determine an upper bound on the semipaired domination number of these trees and characterize the trees attaining this bound.
Databáze: Directory of Open Access Journals