Autor: |
Haynes Teresa W., Henning Michael A. |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Discussiones Mathematicae Graph Theory, Vol 43, Iss 1, Pp 35-53 (2023) |
Druh dokumentu: |
article |
ISSN: |
2083-5892 |
DOI: |
10.7151/dmgt.2349 |
Popis: |
Let G be a graph with vertex set V. A subset S ⊆ V is a semipaired dominating set of G if every vertex in V \ S is adjacent to a vertex in S and S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number is the minimum cardinality of a semipaired dominating set of G. We characterize the trees having a unique minimum semipaired dominating set. We also determine an upper bound on the semipaired domination number of these trees and characterize the trees attaining this bound. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|