Superior synergistic oxidation resistance of medium-entropy carbide ceramic powders rather than multi-phase carbide ceramic powders

Autor: Jiachen Li, Fanyu Lu, Tao Li, Yanqin Fu, Junhao Zhao, Junshuai Lv, Yulei Zhang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Journal of Advanced Ceramics, Vol 13, Iss 8, Pp 1223-1233 (2024)
Druh dokumentu: article
ISSN: 2226-4108
2227-8508
DOI: 10.26599/JAC.2024.9220931
Popis: To date, some questions about medium-entropy carbide ceramics and the corresponding multi-phase carbide ceramics with the same cations and proportions remain unclear. Regarding oxidation behavior, do both have synergistic oxidation abilities and what role does entropy stabilization play in medium-entropy carbides? In this work, the oxidation behaviors of HfC–ZrC–TiC multi-phase carbide (HZT-MPC) and (Hf1/3Zr1/3Ti1/3)C medium-entropy carbide (HZT-MEC) powders were investigated. After thermogravimetry (TG) oxidation, the TG curve of HZT-MPC had a bimodal distribution. The “preferential oxidation” of HfC/ZrC occurred within HZT-MPC, followed by the formation of multi-phase oxides (HfO2, ZrO2, and TiO2). The uneven compositional distribution slowed their solid solution reactions to form Ti-doped (Hf,Zr)O2 and (Hf,Zr)TiO4. The TG curve of HZT-MEC had a single peak. A uniform compositional distribution at the atomic scale promoted the rapid interdiffusion of oxides, forming Ti-doped (Hf,Zr)O2 and (Hf,Zr)TiO4 without ZrO2, HfO2, and TiO2 after TG oxidation. Additionally, HZT-MEC had a higher onset oxidation temperature (To; 470 °C) than did HZT-MPC (430 °C), and the TG single peak of HZT-MEC was between the TG bimodal peaks of HZT-MPC. Therefore, HZT-MEC showed superior oxidation resistance compared to HZT-MPC, which was attributed to the entropy stabilization effect of HZT-MEC suppressing the “preferential oxidation” of HfC/ZrC and the “delayed oxidation” of TiC, promoting the synergistic oxidation ability of multiple principal elements.
Databáze: Directory of Open Access Journals