Autor: |
Jiaxian He, Zeyu Qin, Kexin Liu, Xiangyi Li, Yiming Kou, Zhenghua Jin, Ruiyuan He, Min Hong, Bo Xiong, Ling Liao, Guochao Sun, Siya He, Mingfei Zhang, Dong Liang, Xiulan Lv, Xun Wang, Zhihui Wang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Frontiers in Plant Science, Vol 15 (2024) |
Druh dokumentu: |
article |
ISSN: |
1664-462X |
DOI: |
10.3389/fpls.2024.1430204 |
Popis: |
Volatile compounds are important determinants affecting fruit flavor. Previous study has identified a bud mutant of ‘Ehime 38’ (Citrus reticulata) with different volatile profile. However, the volatile changes between WT and MT during fruit development and underlying mechanism remain elusive. In this study, a total of 35 volatile compounds were identified in the pulps of WT and MT at five developmental stages. Both varieties accumulated similar and the highest levels of volatiles at stage S1, and showed a downward trend as the fruit develops. However, the total volatile contents in the pulps of MT were 1.4–2.5 folds higher than those in WT at stages S2-S5, which was mainly due to the increase in the content of d-limonene. Transcriptomic and RT-qPCR analysis revealed that most genes in MEP pathway were positively correlated with the volatile contents, of which DXS1 might mainly contribute to the elevated volatiles accumulation in MT by increasing the flux into the MEP pathway. Moreover, temporal expression analysis indicated that these MEP pathway genes functioned at different developmental stages. This study provided comprehensive volatile metabolomics and transcriptomics characterizations of a citrus mutant during fruit development, which is valuable for fruit flavor improvement in citrus. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|