Existence of positive solutions of elliptic equations with Hardy term
Autor: | Huimin Yan, Junhui Xie |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: | article |
ISSN: | 1417-3875 |
DOI: | 10.14232/ejqtde.2024.1.1 |
Popis: | This paper is devoted to studying the existence of positive solutions of the problem: \begin{equation} \begin{cases}\label{0.1}\tag{$\ast$} -\Delta u=\frac{u^{p}}{|x|^{a}}+h(x,u,\nabla u), & \mbox{in} \ \Omega,\\ u=0, & \mbox{on}\ \partial\Omega,\\ \end{cases} \end{equation} where $\Omega\subset \mathbb{R}^{N}(N\geq3)$ is an open bounded smooth domain with boundary $\partial\Omega$, and $1 |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |