Autor: |
Kelei Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 8, Iss 8, Pp 18631-18648 (2023) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2023949?viewType=HTML |
Popis: |
In this paper, we study the Orlicz estimates for the parabolic Schrödinger operator $ L = {\partial _t} - {\Delta _X} + V, $ where the nonnegative potential $ V $ belongs to a reverse Hölder class on nilpotent Lie groups $ {\Bbb G} $ and $ {\Delta _X} $ is the sub-Laplace operator on $ {\Bbb G} $. Under appropriate growth conditions of the Young function, we obtain the regularity estimates of the operator $ L $ in the Orlicz space by using the domain decomposition method. Our results generalize some existing ones of the $ L^{p} $ estimates. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|