Autor: |
Ank Agarwal, Seongje Park, Shinwon Ha, Ji-Sun Kwon, Mohammed Repon Khan, Bong Gu Kang, Ted M Dawson, Valina L Dawson, Shaida A Andrabi, Sung-Ung Kang |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 15, Iss 4, p e0231978 (2020) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0231978 |
Popis: |
Ischemic strokes result in the death of brain tissue and a wave of downstream effects, often leading to lifelong disabilities or death. However, the underlying mechanisms of ischemic damage and repair systems remain largely unknown. In order to better understand these mechanisms, TMT-isobaric mass tagging and mass spectrometry were conducted on brain cortex extracts from mice subjected to one hour of middle cerebral artery occlusion (MCAO) and after one hour of reperfusion. In total, 2,690 proteins were identified and quantified, out of which 65% of the top 5% of up- and down-regulated proteins were found to be significant (p < 0.05). Network-based gene ontology analysis was then utilized to cluster all identified proteins by protein functional groups and cellular roles. Although three different cellular functions were identified-organelle outer membrane proteins, cytosolic ribosome proteins, and spliceosome complex proteins-several functional domains were found to be common. Of these, organelle outer membrane proteins were downregulated whereas cytosolic ribosome and spliceosome complex proteins were upregulated, indicating that major molecular events post-stroke were translation-associated and subsequent signaling pathways (e.g., poly (ADP-ribose) (PAR) dependent cell death). By approaching stroke analyses via TMT-isobaric mass tagging, the work herein presents a grand scope of protein-based molecular mechanisms involved with ischemic stroke recovery. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|