On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$

Autor: Burak Oğul, Dağistan Şimşek
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Communications in Advanced Mathematical Sciences, Vol 4, Iss 1, Pp 46-54 (2021)
Druh dokumentu: article
ISSN: 2651-4001
DOI: 10.33434/cams.814296
Popis: In this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$.
Databáze: Directory of Open Access Journals