On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$
Autor: | Burak Oğul, Dağistan Şimşek |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Communications in Advanced Mathematical Sciences, Vol 4, Iss 1, Pp 46-54 (2021) |
Druh dokumentu: | article |
ISSN: | 2651-4001 |
DOI: | 10.33434/cams.814296 |
Popis: | In this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |