Discovery of an Extremely r-process-enhanced Thin-disk Star with [Eu/H] = +0.78

Autor: Xiao-Jin Xie, Jianrong Shi, Hong-Liang Yan, Tian-Yi Chen, Carlos Allende Prieto, Timothy C. Beers, Shuai Liu, Chun-Qian Li, Ming-Yi Ding, Yao-Jia Tang, Ruizhi Zhang, Renjing Xie
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: The Astrophysical Journal Letters, Vol 970, Iss 2, p L30 (2024)
Druh dokumentu: article
ISSN: 2041-8213
2041-8205
DOI: 10.3847/2041-8213/ad5ffd
Popis: Highly r -process-enhanced (RPE) stars are rare and usually metal poor ([Fe/H] < −1.0), and they mainly populate the Milky Way halo and dwarf galaxies. This study presents the discovery of a relatively bright ( V = 12.72), highly RPE ( r -II) star ([Eu/Fe] = +1.32, [Ba/Eu] = −0.95), LAMOST J020623.21+494127.9. This star was selected from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope medium-resolution ( R ∼ 7500) spectroscopic survey; follow-up high-resolution ( R ∼ 25,000) observations were conducted with the High Optical Resolution Spectrograph installed on the Gran Telescopio Canarias. The stellar parameters ( T _eff = 4130 K, $\mathrm{log}\,{\rm{g}}$ = 1.52, [Fe/H] = −0.54, ξ = 1.80 km s ^−1 ) have been inferred taking into account nonlocal thermodynamic equilibrium effects. The abundances of [Ce/Fe], [Pr/Fe], and [Nd/Fe] are +0.19, +0.65, and +0.64, respectively, relatively low compared to the Solar r -process pattern normalized to Eu. This star has a high metallicity ([Fe/H] = −0.54) compared to most other highly RPE stars and has the highest measured abundance ratio of Eu to H ([Eu/H] = +0.78). It is classified as a thin-disk star based on its kinematics and does not appear to belong to any known stream or dwarf galaxy.
Databáze: Directory of Open Access Journals