Autor: |
Gu Zhang, Igor V. Gornyi, Alexander D. Mirlin |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Physical Review Research, Vol 2, Iss 1, p 013337 (2020) |
Druh dokumentu: |
article |
ISSN: |
2643-1564 |
DOI: |
10.1103/PhysRevResearch.2.013337 |
Popis: |
Motivated by a recent experiment [A. Marguerite et al., Nature (London) 575, 628 (2019)NATUAS0028-083610.1038/s41586-019-1704-3] on imaging in graphene samples, we investigate theoretically the dissipation induced by resonant impurities in the quantum Hall regime. The impurity-induced forward scattering of electrons at quantum Hall edges leads to an enhanced phonon emission, which reaches its maximum when the impurity state is tuned to resonance by a scanning tip voltage. Our analysis of the effect of the tip potential on the dissipation reveals peculiar thermal rings around the impurities, consistent with experimental observations. Remarkably, this impurity-induced dissipation reveals nontrivial features that are unique for chiral one-dimensional systems such as quantum Hall edges. First, the dissipation is not accompanied by the generation of resistance. Second, this type of dissipation is highly nonlocal: A single impurity induces heat transfer to phonons along the whole edge. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|