Release of natural extracts from PVA and PVA-CMC hydrogel wound dressings: a power law swelling/delivery

Autor: Renata Nunes Oliveira, Luiz Augusto da Cruz Meleiro, Brid Quilty, Garrett Brian McGuinness
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Bioengineering and Biotechnology, Vol 12 (2024)
Druh dokumentu: article
ISSN: 2296-4185
DOI: 10.3389/fbioe.2024.1406336
Popis: IntroductionPVA hydrogels present many characteristics of the ideal dressing, although without antimicrobial properties. The present work aims to study the physical, mechanical and release characteristics of hydrogel wound dressings loaded with either of two natural herbal products, sage extract and dragon's blood.MethodsFourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and tensile mechanical testing were used to investigate the structure and properties of the gels. Swelling and degradation tests were conducted according to ISO 10993-9. Release characteristics were studied using UV Spectrophotometry.ResultsPVA matrices incorporating sage extract or dragon's blood (DB) present hydrogen bonding between these components. PVA-CMC hydrogels containing sage present similar spectra to PVA-CMC alone, probably indicating low miscibility or interaction between the matrix and sage. The opposite is found for DB, which exhibits more pronounced interference with crystallinity than sage. DB and NaCMC negatively affect Young's modulus and failure strength. All samples appear to reach equilibrium swelling degree (ESD) in 24 h. The addition of DB and sage to PVA increases the gels' swelling capacity, indicating that the substances likely separate PVA chains. The inclusion of CMC contributes to high media uptake. The kinetics profile of media uptake for 4 days is described by a power-law model, which is correlated to the drug delivery mechanism.DiscussionA PVA-CMC gel incorporating 15% DB, the highest amount tested, shows the most favorable characteristics for flavonoid delivery, as well as flexibility and swelling capacity.
Databáze: Directory of Open Access Journals