Autor: |
Tianliang Wang, Xin Jiang, Yang Jin, Dawei Song, Meng Yang, Qingshan Zeng |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Energies, Vol 12, Iss 17, p 3299 (2019) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en12173299 |
Popis: |
As the installed capacity of wind power increases rapidly, how to promote wind power curtailment (WPC) integration has become a concern. The surface and underlying causes of wind power curtailment are insufficient peaking capability of the power system and imperfect peaking compensation mechanisms, respectively. Therefore, this paper proposes a peaking compensation mechanism uniting supply side and demand side to enhance system peaking capability. Firstly, through incentive and fairness analysis, the interest relationship of peaking subjects is researched based on game theory, and the peaking contribution on supply/demand side is quantified by Pearson correlation coefficients. Secondly, based on clustering analysis, the potential of system peaking providers are explored adequately, supply-side thermal units are divided into deep peaking clusters, and demand-side demand response (DR) resources are integrated into virtual peaking plants (VPP). Accordingly, a two-stage wind-thermal-VPP coordination optimization model is built to dispatch peaking providers. Furtherly, a two-layer peaking compensation allocation method considering peaking contribution and peaking enthusiasm is proposed to encourage peaking providers and mitigate “combination explosion”. Simulation results indicate that the proposed mechanism effectively promotes the enthusiasm of union peaking and the integration of WPC. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|