Autor: |
Xiao Xie, Ping Liang, Qiwen Qian |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Atmosphere, Vol 14, Iss 4, p 682 (2023) |
Druh dokumentu: |
article |
ISSN: |
2073-4433 |
DOI: |
10.3390/atmos14040682 |
Popis: |
The sea-gale process (SGP) is a significant and disastrous weather event for the marine industry. However, the sub-seasonal predictability of SGP remains unclear. In this study, we investigate the influence of low-frequency oscillation on SGP in the Yangtze River estuary from November to April, and its implications for sub-seasonal prediction. We noted that SGPs have a close relationship with the 10~30 day low-frequency component of the 10-m wind speed in the Yangtze River estuary, and typically occur during the peak phase of the low-frequency oscillation. The 10~30 day low-frequency oscillation of 10-m wind was found to be linked to the eastward propagation of extratropical Rossby waves from the North Atlantic across Europe to East Asia. This Rossby wave leads to the low-frequency oscillation of the Siberian high pressure and Japan Sea low pressure, which is indicative of the 10~30 day low-frequency oscillations of the 10-m wind speed in the Yangtze River Estuary. A sea-gale process index (SGPI) was constructed based on the low-frequency oscillation of the Siberian high and the Japan Sea low in order to predict SGPs at the sub-seasonal time scale. Hindcast and real-time forecasts showed that 2/3 of SGPs can be predicted with a leading time of 10~30 days, and that good sub-seasonal predictions of SGPs are connected with strong low-frequency oscillations at the initial forecast time. Therefore, SGPI can be adopted for the sub-seasonal prediction of SGPs in the Yangtze River Estuary. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|