Generalized convergence analysis of the fractional order systems
Autor: | Ruzitalab Ahmad, Farahi Mohammad Hadi, Erjaee Gholamhossien |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Open Physics, Vol 16, Iss 1, Pp 404-411 (2018) |
Druh dokumentu: | article |
ISSN: | 2391-5471 2018-0055 |
DOI: | 10.1515/phys-2018-0055 |
Popis: | The aim of the present work is to generalize the contraction theory for the analysis of the convergence of fractional order systems for both continuous-time and discrete-time systems. Contraction theory is a methodology for assessing the stability of trajectories of a dynamical system with respect to one another. The result of this study is a generalization of the Lyapunov matrix equation and linear eigenvalue analysis. The proposed approach gives a necessary and sufficient condition for exponential and global convergence of nonlinear fractional order systems. The examples elucidate that the theory is very straightforward and exact. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |
Pro tento záznam nejsou dostupné žádné jednotky.