Autor: |
Ciro Benito Raggio, Paolo Zaffino, Maria Francesca Spadea |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
SoftwareX, Vol 28, Iss , Pp 101923- (2024) |
Druh dokumentu: |
article |
ISSN: |
2352-7110 |
DOI: |
10.1016/j.softx.2024.101923 |
Popis: |
Limited medical image data hinders the training of deep learning (DL) models in the biomedical field. Image augmentation can reduce the data-scarcity problem by generating variations of existing images. However, currently implemented methods require coding, excluding non-programmer users from this opportunity.We therefore present ImageAugmenter, an easy-to-use and open-source module for 3D Slicer imaging computing platform. It offers a simple and intuitive interface for applying over 20 simultaneous MONAI Transforms (spatial, intensity, etc.) to medical image datasets, all without programming.ImageAugmenter makes accessible medical image augmentation, enabling a wider range of users to improve the performance of DL models in medical image analysis by increasing the number of samples available for training. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|