ImageAugmenter: A user-friendly 3D Slicer tool for medical image augmentation

Autor: Ciro Benito Raggio, Paolo Zaffino, Maria Francesca Spadea
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: SoftwareX, Vol 28, Iss , Pp 101923- (2024)
Druh dokumentu: article
ISSN: 2352-7110
DOI: 10.1016/j.softx.2024.101923
Popis: Limited medical image data hinders the training of deep learning (DL) models in the biomedical field. Image augmentation can reduce the data-scarcity problem by generating variations of existing images. However, currently implemented methods require coding, excluding non-programmer users from this opportunity.We therefore present ImageAugmenter, an easy-to-use and open-source module for 3D Slicer imaging computing platform. It offers a simple and intuitive interface for applying over 20 simultaneous MONAI Transforms (spatial, intensity, etc.) to medical image datasets, all without programming.ImageAugmenter makes accessible medical image augmentation, enabling a wider range of users to improve the performance of DL models in medical image analysis by increasing the number of samples available for training.
Databáze: Directory of Open Access Journals