Common lipidomic signatures across distinct acute brain injuries in patient outcome prediction

Autor: Santtu Hellström, Antti Sajanti, Abhinav Srinath, Carolyn Bennett, Romuald Girard, Aditya Jhaveri, Ying Cao, Johannes Falter, Janek Frantzén, Fredrika Koskimäki, Seán B. Lyne, Tomi Rantamäki, Riikka Takala, Jussi P. Posti, Susanna Roine, Sulo Kolehmainen, Kenneth Nazir, Miro Jänkälä, Jukka Puolitaival, Melissa Rahi, Jaakko Rinne, Anni I. Nieminen, Eero Castrén, Janne Koskimäki
Jazyk: angličtina
Rok vydání: 2025
Předmět:
Zdroj: Neurobiology of Disease, Vol 204, Iss , Pp 106762- (2025)
Druh dokumentu: article
ISSN: 1095-953X
DOI: 10.1016/j.nbd.2024.106762
Popis: Lipidomic alterations have been associated with various neurological diseases. Examining temporal changes in serum lipidomic profiles, irrespective of injury type, reveals promising prognostic indicators. In this longitudinal prospective observational study, serum samples were collected early (46 ± 24 h) and late (142 ± 52 h) post-injury from 70 patients with ischemic stroke, aneurysmal subarachnoid hemorrhage, and traumatic brain injury that had outcomes dichotomized as favorable (modified Rankin Scores (mRS) 0–3) and unfavorable (mRS 4–6) three months post-injury. Lipidomic profiling of 1153 lipids, analyzed using statistical and machine learning methods, identified 153 lipids with late-stage significant outcome differences. Supervised machine learning pinpointed 12 key lipids, forming a combinatory prognostic equation with high discriminatory power (AUC 94.7 %, sensitivity 89 %, specificity 92 %; p
Databáze: Directory of Open Access Journals