Genetic mutations in Cryptococcus neoformans pyrimidine salvage pathway enzymes contribute to reduced susceptibility against 5-fluorocytosine

Autor: Fatima Zohra Delma, Dong-Hoon Yang, Alfredo Cabrera-Orefice, Jordy Coolen, Abdullah M. S. Al-Hatmi, Sarah A. Ahmed, Willem J. G. Melchers, Yun C. Chang, Kyung J. Kwon-Chung, Sybren de Hoog, Paul E. Verweij, Jochem B. Buil
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: npj Antimicrobials and Resistance, Vol 2, Iss 1, Pp 1-8 (2024)
Druh dokumentu: article
ISSN: 2731-8745
DOI: 10.1038/s44259-024-00041-8
Popis: Abstract Cryptococcal meningitis is a high-mortality infection. Adding 5-fluorocytosine (5-FC) to its treatment improves outcomes, but resistance to 5-FC presents a significant challenge. We conducted whole-genome sequencing on seven C. neoformans isolates with varying 5-FC susceptibility, along with proteomic and in silico analyses. Our findings indicate that mutations in genes of the pyrimidine salvage pathway are responsible for 5-FC resistance. Specifically, we identified an E64G missense mutation in the FUR1 gene, a large deletion in the FCY1 gene, and a point mutation in FCY1 leading to a truncated protein. The proteomic data indicated that these mutations resulted in the absence or reduction of crucial enzymes in resistant isolates. Genetic transformations confirmed the association between these mutations and 5-FC resistance. Resistance to 5-FC can develop during treatment and is closely tied to mutations in key metabolic enzymes. Understanding in vivo resistance development is crucial for combating resistance and enhancing patient outcomes.
Databáze: Directory of Open Access Journals