The Hybridization Effects of Glass and Carbon Fibers on the Mechanical Properties of Kenaf Mat/Epoxy Composites
Autor: | Khurshid Malik, Faiz Ahmad, Nurul Azhani Yunus, Ebru Gunister, MSI Shaik Dawood, Saad Ali, Catherine Sheila Mani, Muhammad Syahir, Anselm Leon Larry |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Natural Fibers, Vol 19, Iss 17, Pp 15432-15447 (2022) |
Druh dokumentu: | article |
ISSN: | 1544-0478 1544-046X 15440478 |
DOI: | 10.1080/15440478.2022.2127437 |
Popis: | Kenaf mat/epoxy composite possesses low mechanical properties. The investigation examined the hybridization impact on the mechanical performance of kenaf mat/carbon/epoxy and kenaf mat/glass/epoxy hybrid composites. Pure and hybrid composites were fabricated using the vacuum-assisted resin infusion method. Density, tensile, flexural, interlaminar shear, and fracture toughness (Mode II) properties were tested according to the ASTM standards. The results showed that density increased around 10% for kenaf mat/carbon/epoxy hybrid and 29% for kenaf mat/glass/epoxy hybrid compared to pure kenaf mat/epoxy composites. Kenaf mat/carbon/epoxy hybrid composites displayed approximately 529%, 497%, 512%, 1055%, 272%, and 443% improvement in the tensile strength, tensile modulus, flexural strength, flexural modulus, interlaminar shear strength (ILSS), and fracture toughness, respectively, compared to the pure kenaf mat/epoxy composite. Kenaf mat/glass/epoxy hybrid composites displayed approximately 467%, 275%, 405%, 413%, 232%, and 366% improvement in the tensile strength, tensile modulus, flexural strength, flexural modulus, ILSS, and fracture toughness, respectively, compared to the pure kenaf mat/epoxy composite. Although the carbon fiber volume fraction was the lowest (17.23%) in hybrid kenaf mat/carbon/epoxy composites compared to glass fiber (24.83%) in hybrid kenaf mat/glass/epoxy composites, the tensile, flexural, and interlaminar shear performance was higher in hybrid kenaf mat/carbon/epoxy composites than hybrid kenaf mat/glass/epoxy composites. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |