RSSI and Device Pose Fusion for Fingerprinting-Based Indoor Smartphone Localization Systems

Autor: Imran Moez Khan, Andrew Thompson, Akram Al-Hourani, Kandeepan Sithamparanathan, Wayne S. T. Rowe
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Future Internet, Vol 15, Iss 6, p 220 (2023)
Druh dokumentu: article
ISSN: 1999-5903
DOI: 10.3390/fi15060220
Popis: Complementing RSSI measurements at anchors with onboard smartphone accelerometer measurements is a popular research direction to improve the accuracy of indoor localization systems. This can be performed at different levels; for example, many studies have used pedestrian dead reckoning (PDR) and a filtering method at the algorithm level for sensor fusion. In this study, a novel conceptual framework was developed and applied at the data level that first utilizes accelerometer measurements to classify the smartphone’s device pose and then combines this with RSSI measurements. The framework was explored using neural networks with room-scale experimental data obtained from a Bluetooth low-energy (BLE) setup. Consistent accuracy improvement was obtained for the output localization classes (zones), with an average overall accuracy improvement of 10.7 percentage points for the RSSI-and-device-pose framework over that of RSSI-only localization.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje