Analytical Investigation of Time-Dependent Two-Dimensional Non-Newtonian Boundary Layer Equations

Autor: Imre Ferenc Barna, Laszló Mátyás, Krisztián Hriczó, Gabriella Bognár
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 23, p 3863 (2024)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math12233863
Popis: In this study, five different time-dependent incompressible non-Newtonian boundary layer models in two dimensions are investigated with the self-similar Ansatz, including external magnetic field effects. The power-law, the Casson fluid, the Oldroyd-B model, the Walter fluid B model, and the Williamson fluid are analyzed. For the first two models, analytical results are given for the velocity and pressure distributions, which can be expressed by different types of hypergeometric functions. Depending on the parameters involved in the analytical solutions of the nonlinear ordinary differential equation obtained by the similarity transformation, a vast range of solution types is presented. It turned out that the last three models lack self-similar symmetry; therefore, no analytic solutions can be derived.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje