Autor: |
Imre Ferenc Barna, Laszló Mátyás, Krisztián Hriczó, Gabriella Bognár |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 12, Iss 23, p 3863 (2024) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math12233863 |
Popis: |
In this study, five different time-dependent incompressible non-Newtonian boundary layer models in two dimensions are investigated with the self-similar Ansatz, including external magnetic field effects. The power-law, the Casson fluid, the Oldroyd-B model, the Walter fluid B model, and the Williamson fluid are analyzed. For the first two models, analytical results are given for the velocity and pressure distributions, which can be expressed by different types of hypergeometric functions. Depending on the parameters involved in the analytical solutions of the nonlinear ordinary differential equation obtained by the similarity transformation, a vast range of solution types is presented. It turned out that the last three models lack self-similar symmetry; therefore, no analytic solutions can be derived. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|