Trajectory tracking control of a self-balancing robot via adaptive neural networks

Autor: Isaac Gandarilla, Jorge Montoya-Cháirez, Víctor Santibáñez, Carlos Aguilar-Avelar, Javier Moreno-Valenzuela
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Engineering Science and Technology, an International Journal, Vol 35, Iss , Pp 101259- (2022)
Druh dokumentu: article
ISSN: 2215-0986
DOI: 10.1016/j.jestch.2022.101259
Popis: In order to ensure trajectory tracking on a two degrees-of-freedom self-balancing robot (SBR) a control scheme, based on the combination of adaptive neural networks and input–output linearization, is presented in this paper. Both external and internal dynamics are analyzed and proof of uniform ultimate boundedness of the position errors is given. The controller performance is assessed via real-time experiments and compared with respect to other control schemes. Better tracking accuracy and disturbance rejection capability is produced by the introduced controller.
Databáze: Directory of Open Access Journals