Experimental Investigation on the Effect of Sequences of Unsteady Flows on Bedload Sediment Transport

Autor: Zahra Askari, Luca Mao, Saeed Reza Khodashenas, Kazem Esmaili
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Geosciences, Vol 14, Iss 7, p 193 (2024)
Druh dokumentu: article
ISSN: 2076-3263
DOI: 10.3390/geosciences14070193
Popis: Flash floods in ephemeral streams are rare, short and difficult to forecast and thus to monitor. During these events, bedload transport reaches very high rates and most sediment transport occurs within a limited number of hours during the course of a year. Because monitoring of bedload in ephemeral rivers is challenging, here we present the results of a series of flume experiments designed to simulate short, flashy floods. Since most flume experiments usually involve single events, here we add to existing evidence by testing the effects of sequences of multiple floods in rapid succession. The flume is 10 m long, 0.3 m wide and 0.5 m deep. Two bed sediment mixtures (well sorted and poorly sorted) with similar median grain size but a different standard deviation were used. Bedload was monitored continuously during each hydrograph, but no sediment was fed. The flume experiments used six triangular hydrographs with peak flows ranging from 0.0147 to 0.02 m3s−1 and durations ranging from 150 to 400 s. Results indicate that the sediment transport rate decreases progressively from the first to the third hydrograph, and that this pattern is consistent for all permutations of peak discharge and flood duration. In all of the runs, the sediment transport rate at a specified flow was higher during the rising limb than the falling limb of the hydrograph, indicating clockwise hysteresis. Furthermore, in the subsequent repetitions of the same hydrograph, the degree of hysteresis generally diminishes in magnitude from the first to the last repetition for all the experiments, irrespective of their magnitude and duration.
Databáze: Directory of Open Access Journals