FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods

Autor: Timothy Becker, Wan-Ping Lee, Joseph Leone, Qihui Zhu, Chengsheng Zhang, Silvia Liu, Jack Sargent, Kritika Shanker, Adam Mil-homens, Eliza Cerveira, Mallory Ryan, Jane Cha, Fabio C. P. Navarro, Timur Galeev, Mark Gerstein, Ryan E. Mills, Dong-Guk Shin, Charles Lee, Ankit Malhotra
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Genome Biology, Vol 19, Iss 1, Pp 1-14 (2018)
Druh dokumentu: article
ISSN: 1474-760X
DOI: 10.1186/s13059-018-1404-6
Popis: Abstract Comprehensive and accurate identification of structural variations (SVs) from next generation sequencing data remains a major challenge. We develop FusorSV, which uses a data mining approach to assess performance and merge callsets from an ensemble of SV-calling algorithms. It includes a fusion model built using analysis of 27 deep-coverage human genomes from the 1000 Genomes Project. We identify 843 novel SV calls that were not reported by the 1000 Genomes Project for these 27 samples. Experimental validation of a subset of these calls yields a validation rate of 86.7%. FusorSV is available at https://github.com/TheJacksonLaboratory/SVE.
Databáze: Directory of Open Access Journals