Popis: |
By using the upper and lower solution method, this study proves the existence of positive solutions for a class of discrete problems with (p,q) -Laplace operators-Δ(ϕp(Δut-1))-Δ(ϕq(Δut-1))=λf(ut), t∈[1,T]Z ,Δu0=uT+1=0,where,λ>0 is a parameter, T>2 is a fixed positive integer,[1,T]Z=1,2,⋯,T, ϕrs=| s | r-2s,Δut=ut+1-ut,f:0,∞→R is p-sublinear at ∞ with possible singularity at 0.(运用上下解方法获得了一类半正离散(p,q) -Laplace问题 -Δ(ϕp(Δut-1))-Δ(ϕq(Δut-1))=λf(ut), t∈[1,T]Z ,Δu0=uT+1=0正解的存在性,其中,p>q>1,参数λ>0,T>2为固定的整数,[1,T] Z=1,2,⋯,T,ϕrs=| s | r-2s,Δut=ut+1-ut,f :0,∞→R在无穷远处满足p-次线性条件,在0处可能奇异。) |