Existence of positive solutions for a class of discrete problems with ( p,q)-Laplace operators(一类带(p,q)-Laplace算子离散问题正解的存在性)

Autor: 石敏瑞(SHI Minrui), 高承华(GAO Chenghua)
Jazyk: čínština
Rok vydání: 2024
Předmět:
Zdroj: Zhejiang Daxue xuebao. Lixue ban, Vol 51, Iss 4, Pp 438-442 (2024)
Druh dokumentu: article
ISSN: 1008-9497
DOI: 10.3785/j.issn.1008-9497.2024.04.006
Popis: By using the upper and lower solution method, this study proves the existence of positive solutions for a class of discrete problems with (p,q) -Laplace operators-Δ(ϕp(Δut-1))-Δ(ϕq(Δut-1))=λf(ut), t∈[1,T]Z ,Δu0=uT+1=0,where,λ>0 is a parameter, T>2 is a fixed positive integer,[1,T]Z=1,2,⋯,T, ϕrs=| s | r-2s,Δut=ut+1-ut,f:0,∞→R is p-sublinear at ∞ with possible singularity at 0.(运用上下解方法获得了一类半正离散(p,q) -Laplace问题 -Δ(ϕp(Δut-1))-Δ(ϕq(Δut-1))=λf(ut), t∈[1,T]Z ,Δu0=uT+1=0正解的存在性,其中,p>q>1,参数λ>0,T>2为固定的整数,[1,T] Z=1,2,⋯,T,ϕrs=| s | r-2s,Δut=ut+1-ut,f :0,∞→R在无穷远处满足p-次线性条件,在0处可能奇异。)
Databáze: Directory of Open Access Journals