Deep learning multi-organ segmentation for whole mouse cryo-images including a comparison of 2D and 3D deep networks
Autor: | Yiqiao Liu, Madhusudhana Gargesha, Bryan Scott, Arthure Olivia Tchilibou Wane, David L. Wilson |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Scientific Reports, Vol 12, Iss 1, Pp 1-13 (2022) |
Druh dokumentu: | article |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-022-19037-3 |
Popis: | Abstract Cryo-imaging provided 3D whole-mouse microscopic color anatomy and fluorescence images that enables biotechnology applications (e.g., stem cells and metastatic cancer). In this report, we compared three methods of organ segmentation: 2D U-Net with 2D-slices and 3D U-Net with either 3D-whole-mouse or 3D-patches. We evaluated the brain, thymus, lung, heart, liver, stomach, spleen, left and right kidney, and bladder. Training with 63 mice, 2D-slices had the best performance, with median Dice scores of > 0.9 and median Hausdorff distances of |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |