Unfolding and modeling the recovery process after COVID lockdowns

Autor: Xuan Yang, Yang Yang, Chenhao Tan, Yinghe Lin, Zhengzhe Fu, Fei Wu, Yueting Zhuang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-023-30100-5
Popis: Abstract Lockdown is a common policy used to deter the spread of COVID-19. However, the question of how our society comes back to life after a lockdown remains an open one. Understanding how cities bounce back from lockdown is critical for promoting the global economy and preparing for future pandemics. Here, we propose a novel computational method based on electricity data to study the recovery process, and conduct a case study on the city of Hangzhou. With the designed Recovery Index, we find a variety of recovery patterns in main sectors. One of the main reasons for this difference is policy; therefore, we aim to answer the question of how policies can best facilitate the recovery of society. We first analyze how policy affects sectors and employ a change-point detection algorithm to provide a non-subjective approach to policy assessment. Furthermore, we design a model that can predict future recovery, allowing policies to be adjusted accordingly in advance. Specifically, we develop a deep neural network, TPG, to model recovery trends, which utilizes the graph structure learning to perceive influences between sectors. Simulation experiments using our model offer insights for policy-making: the government should prioritize supporting sectors that have greater influence on others and are influential on the whole economy.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje