Finite-difference method for the Gamma equation on non-uniform grids
Autor: | Le Minh Hieu, Truong Thi Hieu Hanh, Dang Ngoc Hoang Thanh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Vietnam Journal of Science, Technology and Engineering, Vol 61, Iss 4 (2022) |
Druh dokumentu: | article |
ISSN: | 2525-2461 2615-9937 |
DOI: | 10.31276/VJSTE.61(4).03-08 |
Popis: | We propose a new monotone finite-difference scheme for the second-order local approximation on a nonuniform grid that approximates the Dirichlet initial boundary value problem (IBVP) for the quasi-linear convection-diffusion equation with unbounded nonlinearity, namely, for the Gamma equation obtained by transformation of the nonlinear Black-Scholes equation into a quasilinear parabolic equation. Using the difference maximum principle, a two-sided estimate and an a priori estimate in the c-norm are obtained for the solution of the difference schemes that approximate this equation. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |