Autor: |
Suiying Dong, Jiafu Dai, Ying Yang, Amir Zada, Kezhen Qi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Molecules, Vol 29, Iss 19, p 4561 (2024) |
Druh dokumentu: |
article |
ISSN: |
1420-3049 |
DOI: |
10.3390/molecules29194561 |
Popis: |
The large-scale utilization of antibiotics has opened a separate chapter of pollution with the generation of reactive drug-resistant bacteria. To deal with this, in this work, different mass ratios of CoFe2O4/WO3 nanocomposites were prepared following an in situ growth method using the precursors of WO3 and CoFe2O4. The structure, morphology, and optical properties of the nanocomposite photocatalysts were scrutinized by X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (UV-Vis DRS), photoluminescence spectrum (PL), etc. The experimental data signified that the loading of CoFe2O4 obviously changed the optical properties of WO3. The photocatalytic performance of CoFe2O4/WO3 composites was investigated by considering tetracycline as a potential pollutant. The outcome of the analyzed data exposed that the CoFe2O4/WO3 composite with a mass ratio of 5% had the best degradation performance for tetracycline eradication under the solar light, and a degradation efficiency of 77% was achieved in 20 min. The monitored degradation efficiency of the optimized photocatalyst was 45% higher compared with the degradation efficiency of 32% for pure WO3. Capturing experiments and tests revealed that hydroxyl radical (·OH) and hole (h+) were the primary eradicators of the target pollutant. This study demonstrates that a proper mass of CoFe2O4 can significantly push WO3 for enhanced eradication of waterborne pollutants. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|