Autor: |
Mathivanan A., Sudeshkumar M.P., Ramadoss R., Ezilarasan Chakaravarthy, Raju Ganesamoorthy, Jayaseelan V. |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Manufacturing Review, Vol 8, p 24 (2021) |
Druh dokumentu: |
article |
ISSN: |
2265-4224 |
DOI: |
10.1051/mfreview/2021022 |
Popis: |
To-date, the usage of finite element analysis (FEA) in the area of machining operations has demonstrated to be efficient to investigate the machining processes. The simulated results have been used by tool makers and researchers to optimize the process parameters. As a 3D simulation normally would require more computational time, 2D simulations have been popular choices. In the present article, a Finite Element Model (FEM) using DEFORM 3D is presented, which was used to predict the cutting force, temperature at the insert edge, effective stress during turning of AISI 304 stainless steel. The simulated results were compared with the experimental results. The shear friction factor of 0.6 was found to be best, with strong agreement between the simulated and experimental values. As the cutting speed increased from 125 m/min to 200 m/min, a maximum value of 750 MPa stress as well as a temperature generation of 650 °C at the insert edge have been observed at rather higher feed rate and perhaps a mid level of depth of cut. Furthermore, the Response Surface Methodology (RSM) model is developed to predict the cutting force and temperature at the insert edge. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|