On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$

Autor: S. Pirzada, B.A. Rather, T.A. Chishti
Jazyk: English<br />Ukrainian
Rok vydání: 2021
Předmět:
Zdroj: Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 1, Pp 48-57 (2021)
Druh dokumentu: article
ISSN: 2075-9827
2313-0210
DOI: 10.15330/cmp.13.1.48-57
Popis: For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and only if $xy=0$. We find the distance Laplacian spectrum of the zero divisor graphs $\Gamma(\mathbb{Z}_{n})$ for different values of $n$. Also, we obtain the distance Laplacian spectrum of $\Gamma(\mathbb{Z}_{n})$ for $n=p^z$, $z\geq 2$, in terms of the Laplacian spectrum. As a consequence, we determine those $n$ for which zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is distance Laplacian integral.
Databáze: Directory of Open Access Journals