Autor: |
Charles Woodrum, Torrey Wagner, David Weeks |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Algorithms, Vol 17, Iss 5, p 214 (2024) |
Druh dokumentu: |
article |
ISSN: |
1999-4893 |
DOI: |
10.3390/a17050214 |
Popis: |
Quantum computing has the potential to solve problems that are currently intractable to classical computers with algorithms like Quantum Phase Estimation (QPE); however, noise significantly hinders the performance of today’s quantum computers. Machine learning has the potential to improve the performance of QPE algorithms, especially in the presence of noise. In this work, QPE circuits were simulated with varying levels of depolarizing noise to generate datasets of QPE output. In each case, the phase being estimated was generated with a phase gate, and each circuit modeled was defined by a randomly selected phase. The model accuracy, prediction speed, overfitting level and variation in accuracy with noise level was determined for 5 machine learning algorithms. These attributes were compared to the traditional method of post-processing and a 6x–36 improvement in model performance was noted, depending on the dataset. No algorithm was a clear winner when considering these 4 criteria, as the lowest-error model (neural network) was also the slowest predictor; the algorithm with the lowest overfitting and fastest prediction time (linear regression) had the highest error level and a high degree of variation of error with noise. The XGBoost ensemble algorithm was judged to be the best tradeoff between these criteria due to its error level, prediction time and low variation of error with noise. For the first time, a machine learning model was validated using a 2-qubit datapoint obtained from an IBMQ quantum computer. The best 2-qubit model predicted within 2% of the actual phase, while the traditional method possessed a 25% error. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|