Autor: |
Xiangyang Qin, Cheng Yang, Mengmeng Hu, Yunxia Duan, Na Zhang, Jinxin Wang, Hengzhi Wang, Weitang Liu |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Agronomy, Vol 12, Iss 9, p 2203 (2022) |
Druh dokumentu: |
article |
ISSN: |
2073-4395 |
DOI: |
10.3390/agronomy12092203 |
Popis: |
Black-grass (Alopecurus myosuroides Huds.) is a common weed in Chinese wheat fields, and has become troublesome due to its evolution of herbicide resistance. One black-grass population (HN-14) collected from a wheat field where herbicides were applied was suspected to be resistant (R) to mesosulfuron-methyl. This study aims to establish a cross-resistance pattern and explore potential resistance mechanisms. The results of a whole-plant dose response assay showed that the resistant (R) population had a high of resistance to mesosulfuron-methyl (33-fold); meanwhile, no synergism of P450s activity inhibitor malathion was observed. The sequencing results revealed that ALS resistance mutation Trp-574-Leu occurred in R plants. The results of in vitro ALS enzyme activity assays also supported that the extractable ALS from R plants were 23.22-fold resistant to mesosulfuron-methyl. In the light of the “R” resistance rating system, HN-14 has evolved RRR and RR resistance to fenoxaprop-P-ethyl, clodinafop-propargyl, haloxyfop-methyl, and fluazifop-P-butyl and R? (resistance may be developing) to pinoxaden, however remains sensitive to imazethapyr, quizalofop-P-ethyl, tralkoxydim, and isoproturon. These results indicated that the mesosulfuron-methyl resistance in the black-grass population HN-14 was driven by a target-site mechanism rather than a nontarget (at least P450s-mediated) mechanism. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|