Molecular Basis of Resistance to Mesosulfuron-Methyl in a Black-Grass (Alopecurus myosuroides Huds.) Population from China

Autor: Xiangyang Qin, Cheng Yang, Mengmeng Hu, Yunxia Duan, Na Zhang, Jinxin Wang, Hengzhi Wang, Weitang Liu
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Agronomy, Vol 12, Iss 9, p 2203 (2022)
Druh dokumentu: article
ISSN: 2073-4395
DOI: 10.3390/agronomy12092203
Popis: Black-grass (Alopecurus myosuroides Huds.) is a common weed in Chinese wheat fields, and has become troublesome due to its evolution of herbicide resistance. One black-grass population (HN-14) collected from a wheat field where herbicides were applied was suspected to be resistant (R) to mesosulfuron-methyl. This study aims to establish a cross-resistance pattern and explore potential resistance mechanisms. The results of a whole-plant dose response assay showed that the resistant (R) population had a high of resistance to mesosulfuron-methyl (33-fold); meanwhile, no synergism of P450s activity inhibitor malathion was observed. The sequencing results revealed that ALS resistance mutation Trp-574-Leu occurred in R plants. The results of in vitro ALS enzyme activity assays also supported that the extractable ALS from R plants were 23.22-fold resistant to mesosulfuron-methyl. In the light of the “R” resistance rating system, HN-14 has evolved RRR and RR resistance to fenoxaprop-P-ethyl, clodinafop-propargyl, haloxyfop-methyl, and fluazifop-P-butyl and R? (resistance may be developing) to pinoxaden, however remains sensitive to imazethapyr, quizalofop-P-ethyl, tralkoxydim, and isoproturon. These results indicated that the mesosulfuron-methyl resistance in the black-grass population HN-14 was driven by a target-site mechanism rather than a nontarget (at least P450s-mediated) mechanism.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje