Autor: |
Fiona Giannini, Alexandra B. Hogan, Mohinder Sarna, Kathryn Glass, Hannah C. Moore |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
BMC Infectious Diseases, Vol 24, Iss 1, Pp 1-10 (2024) |
Druh dokumentu: |
article |
ISSN: |
1471-2334 |
DOI: |
10.1186/s12879-024-09400-2 |
Popis: |
Abstract Background Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory infections in children worldwide. The highest incidence of severe disease is in the first 6 months of life, with infants born preterm at greatest risk for severe RSV infections. The licensure of new RSV therapeutics (a long-acting monoclonal antibody and a maternal vaccine) in Europe, USA, UK and most recently in Australia, has driven the need for strategic decision making on the implementation of RSV immunisation programs. Data driven approaches, considering the local RSV epidemiology, are critical to advise on the optimal use of these therapeutics for effective RSV control. Methods We developed a dynamic compartmental model of RSV transmission fitted to individually-linked population-based laboratory, perinatal and hospitalisation data for 2000–2012 from metropolitan Western Australia (WA), stratified by age and prior exposure. We account for the differential risk of RSV-hospitalisation in full-term and preterm infants (defined as |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|