Autor: |
Ding Xu, Arkajit Mandal, James M. Baxter, Shan-Wen Cheng, Inki Lee, Haowen Su, Song Liu, David R. Reichman, Milan Delor |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 14, Iss 1, Pp 1-8 (2023) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-023-39550-x |
Popis: |
Abstract Semiconductor excitations can hybridize with cavity photons to form exciton-polaritons (EPs) with remarkable properties, including light-like energy flow combined with matter-like interactions. To fully harness these properties, EPs must retain ballistic, coherent transport despite matter-mediated interactions with lattice phonons. Here we develop a nonlinear momentum-resolved optical approach that directly images EPs in real space on femtosecond scales in a range of polaritonic architectures. We focus our analysis on EP propagation in layered halide perovskite microcavities. We reveal that EP–phonon interactions lead to a large renormalization of EP velocities at high excitonic fractions at room temperature. Despite these strong EP–phonon interactions, ballistic transport is maintained for up to half-exciton EPs, in agreement with quantum simulations of dynamic disorder shielding through light-matter hybridization. Above 50% excitonic character, rapid decoherence leads to diffusive transport. Our work provides a general framework to precisely balance EP coherence, velocity, and nonlinear interactions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|